Современная физика. Гейзенберг, Ньютон, Галилей.



На главную


          Когда говорят о современной физике, обычно имеют в виду две фундаментальные концепции, возникшие в двадцатом веке - квантовую теорию и теорию относительности. В последнее двадцатилетие возникла еще одна теория, носящая глубокий характер, - теория коллективных явлений или синергетика. Ко всем трем в полной мере можно отнести все то, что говорилось во Введении применительно к теориям вообще как к моделям, порождаемым разумом. Однако прежде чем ознакомиться с их основными идеями, напомним вкратце, с чем подошла наука к рубежу ХIХ-ХХ веков и чем был вызван кризис, вследствие которого и возникла современная физика. В отношении к природе еще в древнегреческие времена возникла атомистическая идея - есть ли предел делимости тела на части? Положительный ответ означал, что наступит такой момент, что дальнейшее разделение станет невозможным, и существует одна или несколько различных частиц - атомов, которые представляют основу сущего и из различных комбинаций которых состоят все тела. В противном случае материя была бы непрерывной, бесконечно делимой. Греки решали этот вопрос философски, умозрительно, и традиция такого подхода продержалась еще почти два тысячелетия. Впрочем, подходящая техника появилась еще позже. Наука в современном понимании возникла лишь в XVII веке, когда эксперименту было предоставлено право участвовать в обсуждении вопросов бытия, и на помощь "чистому разуму" были призваны органы чувств. Классическая физика началась с И.Ньютона, который последовательно описал механические процессы движения и взаимодействия макроскопических тел на основе созданного им математического языка бесконечно малых. В этом было отступление от атомистических воззрений, но это привело к значительному продвижению в описании и понимании природы. Несмотря на то, что в настоящее время его подход кажется естественным и очевидным на фоне абстрактных представлений современной физики, и с него начинают знакомство с этой наукой в школе, в то время понадобилось почти семьдесят лет, чтобы этот подход окончательно утвердился в умах ученых. Дав свое определение понятиям скорости, ускорения, силы, массы, Ньютон сформулировал законы динамики в виде связей между этими величинами. Проанализировав законы движения небесных тел, обнаруженных Т.Браге и И.Кеплером, он установил закон всемирного тяготения, введя в науку меру гравитационного взаимодействия тел в нашей Вселенной. В результате удалось научиться точно предсказывать солнечные затмения и понять природу морских приливов. Отличительной чертой классической механики являлась обратимость движений во времени, что следовало из соответствующих уравнений. При описании механических процессов в различных системах координат, движущихся относительно друг друга равномерно и прямолинейно, следовало использовать принцип относительности Галилея, состоявший в том, что на ускорения тел, явившиеся следствием их силового взаимодействия, относительное движение систем отсчета никакого влияния не оказывает, и никакими механическими опытами невозможно установить, какая именно из систем движется. Для расчета достаточно просто сложить скорость движения тела в данной системе отсчета и скорость относительного движения систем отсчета. Поэтому можно выбрать наиболее удобную систему отсчета и работать с ней. Например, в движущемся вагоне отпущенный камень упадет вдоль вертикальной прямой, но при наблюдении с неподвижной платформы его траектория будет иметь вид кривой линии - параболы. Если описать движение (и предсказать положения камня) в системе движущегося вагона (что проще), то, чтобы сказать, когда и в какой точке он будет при наблюдении с платформы, достаточно просто учесть относительную скорость (скорость вагона) в конечном ответе. Сплошные среды, такие, как жидкости и газы, явились предметом термодинамики. Между их параметрами (давлением, объемом, температурой, химическим составом) были также установлены количественные соотношения - закон Менделеева-Клапейрона завершил усилия Бойля, Мариотта, Гей-Люссака и Шарля, направленные на изучение поведения газов и жидкостей. Понятие теплоты было отождествлено с энергией, а представления о газах как о системах множеств маленьких молекул позволило связать законы термодинамики и механики в молекулярно-кинетической теории. Этот обобщающий шаг укрепил представление о единстве и познаваемости мира. В XIX веке трудами Дж.Максвелла и Л.Больцмана в строго детерминированный мир механических движений молекул были введены идеи теории вероятности. Удивительная (для механики) необратимость ряда термодинамических явлений (молекулы, разлетевшись из половины сосуда по всему сосуду, никогда вновь не соберутся в половине, хотя из механики это никак не следует; тепло от нагретого тела, перейдя к холодному, никогда не вернется обратно, и термодинамическое равновесие самопроизвольно не нарушится) нашла свое объяснение с точки зрения теории вероятности при учете гигантского числа молекул (порядка 1019 штук в кубическом сантиметре) в любом макроскопическом объеме. Это, между прочим, означает, что упорядоченность в замкнутой (термодинамической) системе никогда не возрастает. Выравнивание температуры и разрушение существующих структур - такова судьба косной материи (в отличие от живых систем, в которых наблюдается усложнение, т.е. образование структур). Механические устройства с тепловыми двигателями явили собой практическое воплощение научных идей молекулярной физики и термодинамики. Новый тип явлений - электрических и магнитных - потребовал новой концепции. И она была дана Дж.Максвеллом на основе опытных данных Ампера и Фарадея. Язык теории Максвелла был все той же математикой бесконечно малых - дифференциальными уравнениями. Непрерывность возобладала и потребовала введения понятия физического поля - области пространства, каждой точке которой поставлено в соответствие одно или несколько чисел. Соотношения между характеристиками полей позволяли предсказать эффекты, которые удалось пронаблюдать на опыте. Электрические машины и радиосвязь отразили научный прогресс, и это было замечательной иллюстрацией успеха теории. Но радиоволны были волнами, а, значит, требовали среды, в которой они могли бы распространяться. Эта среда - мировой эфир, пронизывающий все пространство, - могла бы послужить абсолютной системой отсчета, тем самым укрепив единство мира. Значит, вопрос состоял в том, чтобы как-то ее обнаружить. "Как-то" - потому, что свойства ее были уж очень экзотическими. С одной стороны, огромная Земля летит сквозь эфир со скоростью 30 км/сек, но никакого торможения зарегистрировать не удается (маленькая пуля, вылетев из ружья со скоростью несколько сот метров в секунду, пролетит в воздухе всего несколько километров). Получается, что он очень разреженный. С другой стороны, скорость радиоволн в эфире - 300000 км/сек, что должно соответствовать неимоверным плотности и жесткости этой среды (скорость звуковых волн в стали порядка нескольких километров в секунду). Последним крупным разделом являлась оптика - наука о световых явлениях. Простые законы геометрической оптики с ее прямолинейными лучами требовали объяснения. Его можно было дать, считая свет потоком маленьких частиц. Но тогда было неясно, как частицы узнают, кому отражаться, а кому преломляться, проходя внутрь прозрачного тела. Кроме того, два пересекающихся потока (два луча) никак не воздействовали друг на друга. И как объяснить разложение белго света в радугу ("таинственное явление цветов", как называл его Ньютон)? Можно было также счесть свет волной, распространяющейся в некоей среде, обладающей свойствами эфира. Трудами Гюйгенса и Френеля утвердились представления, в рамках которых свет считался волной, а, значит, должен был проявлять такие волновые свойства, как интерференция (наложение волн) и дифракция (огибание препятствий). И эти свойства наблюдались! После того, как Фарадей обнаружил воздействие магнитного поля на световую волну, тождество электромагнитных и световых волн стало очевидным. Тепловое излучение нагретых тел оказалось электромагнитным (а, значит, световым) излучением, но только с большой длиной волны - такой, что человеческий глаз не мог ее воспринять как свет. Это замкнуло общую картину. В классической физике наступил апофеоз. В соответствии с теорией парадигм оставалось только уточнять детали. Одной из них была нестыковка в теоретических и экспериментальных результатах при излучении так называемого абсолютно черного тела - такого тела, которое, будучи нагретым до определенной температуры, может излучать электромагнитные волны, поглощать их, но отражать не может. Как сажа. Или как Солнце. Эксперимент показывал (рис.), что для каждой температуры существует такая длина волны, на которой тело излучает больше всего энергии. Строгий расчет Рэлея и Джинса, основанный на свойствах электромагнитных волн и термодинамических исследованиях Больцмана, приводил к абсурдному результату: при уменьшении значения длины волны излучаемая энергия должна была стать бесконечно большой. Эта ситуация получила название ультрафиолетовой (то есть коротковолновой) катастрофы. Был еще ряд эффектов, которые не имели удовлетворительного объяснения. Наиболее известный - фотоэффект, то есть эффект возникновения электрического тока в разомкнутой цепи при освещении одного из ее электродов светом. Упрощенно говоря, парадокс состоял в том, что интенсивный свет с большей длиной волны не приводил к эффекту, в то время как слабый свет, но с меньшей длиной волны, направленный на тот же электрод, к эффекту приводил. Кроме того, Лебедевым было обнаружено и измерено давление света (то есть световых волн) на объект. Решение проблемы излучения черного тела, предложенное М.Планком в 1900 году, не укладывалось в рамки здравого смысла позитивистской науки. Планк предположил, что электромагнитная волна испускается порциями, которые получили названия квантов. Но такая дискретность означает, что волна имеет свойство частиц, корпускул! Энергия же одной такой частицы определяется частотой волны, другими словами, ее длиной, и равна произведению частоты на новую мировую константу (постоянную Планка h), которая хоть и очень мала (h = 6,62*1034 Дж*с), но все же конечна. Как это понять? Выполнив соответствующий расчет, Планк получил распределение энергий волн, излучаемых черным телом, в точности совпадающее с экспериментом. А.Эйнштейн применил странную идею Планка к объяснению явления фотоэффекта, и все стало на место: для выбивания электронов из материала электрода, которое и приводит к возникновению тока, нужны частицы с большой энергией, то есть свет с малой длиной волны. Интенсивность света соответствует количеству налетающих частиц, но не характеризует сами частицы. Поэтому интенсивный свет, но с большой длиной волны (соответственно - с малой частотой), к эффекту привести не может. Ну и световое давление - это просто бомбардировка частицами, причем величина давления зависит от энергии частиц (то есть от длины волны) в точном соответствии с теорией Планка. (Интересно отметить, что идея дискретности, прерывности, счетности в генетике утвердилась в том же 1900 году). Другое название электромагнитных квантов - фотоны, мы встречали его в предыдущих главах. Странен фотон... Это такой объект, такая концепция, такой продукт решения математических уравнений, зрительно представить который невозможно (увидеть-то поток фотонов можно): некоторые его свойства - такие же, как у волны, некоторые - такие же, как у частицы. Странность его обусловлена принадлежностью к микромиру. Но в микромире имеются и другие объекты. Например, электрон. До гипотезы Планка электрон считался частицей. Но Де-Бройль предположил, что, как у волны микромира обнаружились корпускулярные свойства, так и у частицы микромира могут быть волновые свойства, и указал, как связаны между собой длина волны и количество движения частицы. И Дэвиссон и Джермер пронаблюдали дифракцию потока электронов на кристаллической решетке никеля, причем характеризующая дифракцию длина волны в точности соответствовала скоростям электронов. Работы Шредингера и Гейзенберга превратили обычную механику в волновую, основным понятием которой стала так называемая волновая функция, с помощью которой можно было предсказать вероятность обнаружения микрочастицы в том или ином месте пространства. Все смешалось. Избежав ультрафиолетовой катастрофы, физика вступила в новый этап, где результаты перестали быть наглядными, но тем не менее остались предсказуемыми. (Привлекая авиационную аналогию, можно сказать, что при подлете к грозовому фронту от визуального полета перешли к полету по приборам, с закрытыми шторками. И пока летим.). Практическая реализация концепции квантов происходит в любом из современных электронных приборов. Обсудим важные мировоззренческие следствия квантовой теории. Как выполняется любое наблюдение? Условно говоря, свет падает на тот объект, за которым мы следим, отражается от него и попадает к нам в глаза. Любой макроскопический объект настолько превосходит микрообъект (в данном случае фотон), что говорить о воздействии этого падающего света на сам объект не приходится. Но если мы и следим за каким-нибудь электроном? Ведь фотон, который на него падает, перед тем как отразиться и попасть в глаз, вполне сравним по характеристикам с электроном и, налетев на него, изменит его движение весьма значительно. Что же мы узнаем об электроне из такого опыта? Видимо, только то, что электрон был в той точке, где произошла встреча с фотоном. Но что с ним станет потом, куда он полетит, сказать невозможно. Если же попытаться воздействовать на электрон как можно слабее, чтобы не изменить его поведение и получить возможность предсказать его дальнейшее движение, то есть взять низкоэнергичный фотон с большой длиной волны, то тогда место их встречи будет известно нам с малой точностью (определяемой в данном случае длиной волны). Таким образом, точного знания и положения, и параметров движения электрона одновременно получить не удается. Чем точнее мы узнаем одно, тем менее точно другое. Это утверждение составляет принцип неопределенности Гейзенберга, кладущий ограничение на наши возможности в познании микромира. Любопытно, что по сравнению с термодинамикой роль теории вероятности в квантовой теории стала более фундаментальной - фактически у математических понятий появился физический смысл. Если раньше теория вероятности использовалась в основном для статистического осреднения параметров систем, содержащих большое количество частиц, то теперь даже одна частица перемещалась в пространстве так или иначе лишь с определенной вероятностью, понятие траектории перестало иметь смысл. Следующей важной концепцией, приобретшей конкретные черты в связи с появлением квантовой теории, была концепция атома. В начале века эту неделимую частицу представляли себе в виде капли положительно заряженной жидкости, в которой плавали отрицательно заряженные электроны. В целом атом был электрически нейтрален и весьма устойчив. Такая модель в общем неплохо описывала наблюдаемые свойства, за исключением спектров излучения или поглощения. Если газ атомов подвергнуть воздействию, например, пропустить электрический разряд через этот газ, то атомы испускают электромагнитное излучение. Такое излучение (световое) можно видеть в газоразрядных трубках. Оказалось, что испускаемый свет имеет не сплошной спектр, как, скажем, Солнце или лампа накаливания, а линейчатый, то есть в нем присутствуют лишь линии определенных длин волн (частот, цветов). Если взять водород, в атоме которого имеется только один электрон, то с помощью капельной модели можно предсказать появление линии излучения, но только одной. Электрон мог бы колебаться в окружающей положительной жидкости и в соответствии с теорией Максвелла испускать электромагнитную волну. Но лишь одной частоты. Бальмер же в эксперименте обнаружил целую серию линий различных частот. Мало того, и в инфракрасной, и в ультрафиолетовой областях также обнаружились серии линий излучения. Известный опыт Резерфорда, в котором положительно заряженные альфа-частицы пролетали сквозь вещество фольги, практически не отклоняясь (только малая часть их отражалась в обратную сторону), решительно противоречил капельной модели атома. Резерфорд предположил, что атом представляет собой динамическую систему наподобие солнечной: вместо Солнца в центре находится массивное положительно заряженное ядро (это от него отскакивают налетающие положительные частицы), а вокруг него по орбитам движутся отрицательно заряженные электроны. Таким образом, большая часть атома оказывается пустой - через нее-то и летят пролетающие частицы. Но классическая электродинамика не допускает устойчивого существования подобной системы. Движущийся ускоренно заряд, а вращающийся по орбите электрон именно таким и является, испускает энергию и должен очень быстро упасть на ядро, что соответствует "исчезновению" атома, похожего на солнечную систему. Но атом устойчив. Нильс Бор сформулировал новый постулат. Он провозгласил, что законы микромира и здесь отличаются от законов макромира, и электрон в атоме может двигаться по орбите и не излучать. Но не по всякой орбите, а только по такой, длина которой соответствует целому числу длин волн Де-Бройля, соответствующих движущемуся электрону. Ясно, что разным скоростям движения будут соответствовать разные радиусы орбит. Если же электрон каким-то образом (скажем, под воздействием внешнего поля) перескакивает с орбиты на орбиту, то его энергия (точнее, энергия атома в целом) меняется, а разность этих энергий излучается (или поглощается) в виде кванта с частотой, определяемой согласно Планку. Расчет привел к блестящему согласию с экспериментальными результатами Бальмера. Таким образом, был установлен еще один закон микромира, противоречащий здравому смыслу, но позволяющий точно предсказать поведение микросистем. Открытое в конце прошлого века Беккерелем, а затем исследованное Пьером и Мари Кюри, Резерфордом, Чедвиком, Ферми явление радиоактивности, указало на сложный состав "атома", и микромир обогатился новыми обитателями - протонами, нейтронами, нейтрино и другими элементарными частицами. Все они подчинялись неочевидным законам квантовой механики. Наиболее важной отличительной чертой новой физики явилась именно ее концептуальная основа, основа на концепции, принципиально неустранимый разрыв между входными условиями и наблюдаемыми результатами, требующий построения аксиоматической теории. Именно об этом шла речь во Введении, когда обсуждался "эксперимент на расстоянии". Одновременно возник важный вопрос, который ранее не обсуждался во всей полноте: что такое измерение? Что именно и как мы измеряем, когда измеряем что-то? Одновременно с исследованием микромира велся поиск эфира, в котором могли бы распространяться электромагнитные волны. В конце прошлого века техника эксперимента достигла такого уровня, что стало возможным обнаружить разницу в 30 км/сек на фоне 300000 км/сек. Это означало, что если Земля летит сквозь неподвижный эфир, в котором распространяются световые сигналы, то, излучая их вдоль направления движения Земли и поперек этого направления (с учетом сложения скоростей света и Земли по Галилею), мы можем обнаружить разницу во временах прохождения одинаковых путей. (Точно так же время движения катера туда и обратно вдоль течения реки больше времени движения того же катера туда и обратно на такое же расстояние поперек течения реки). Наличие разницы свидетельствовало бы о том, что эфир есть (Земля - берег, эфир - текущая река, свет - катер). В 1887 году Майкельсон и Морли поставили соответствующий опыт, но разницы времен обнаружено не было. Впоследствие подобные попытки с использованием все более совершенной аппаратуры повторялись, но с тем же результатом. Эфира нет? По крайней мере, он, по-видимому, не является носителем электромагнитных возмущений. В противном же случае остается лишь предположить, и это сделали Лоренц и Фицджеральд, что все тела, движущиеся сквозь эфир, сокращают свои размеры вдоль направления движения. В этом случае эфир становится принципиально ненаблюдаемым, и никакой абсолютной системы отсчета не оказывается .
Hosted by uCoz