Кинематика материальной точки



На главную


          Одним из основных понятий механики является понятие материальной точки, что означает тело, обладающее массой, размерами которого можно пренебречь при рассмотрении его движения. Движение материальной точки — простейшая задача механики, которая позволит рассмотреть более сложные типы движений. Перемещение материальной точки происходит в пространстве и изменяется со временем. Реальное пространство трехмерно, и положение материальной точки в любой момент времени полностью определяется тремя числами — ее координатами в выбранной системе отсчета. Число независимых величин, задание которых необходимо для однозначного определения положения тела, называется числом его степеней свободы. В качестве системы координат выберем прямоугольную, или декартову, систему координат. Для описания движения точки, кроме системы координат, необходимо еще иметь устройство, с помощью которого можно измерять различные отрезки времени. Такое устройство назовем часами. Выбранная система координат и связанные с ней часы образуют систему отсчета. Декартовы координаты X,Y,Z определяют в пространстве радиус-вектор z, острие которого описывает при его изменении со временем траекторию материальной точки. Длина траектории точки представляет собой величину пройденного пути S(t). Путь S(t)— скалярная величина. Наряду с величиной пройденного пути, перемещение точки характеризуется направлением, в котором она движется. Разность двух радиус-векторов, взятых в различные моменты времени, образует вектор перемещения точки (рис.). Для того чтобы характеризовать, как быстро меняется положение точки в пространстве, пользуются понятием скорости. Под средней скоростью движения по траектории за конечное время ?t понимают отношение пройденного за это время конечного пути ?S ко времени: Скорость движения точки по траектории — скалярная величина. Наряду с ней можно говорить о средней скорости перемещения точки. Эта скорость — величина, направленная вдоль вектора перемещения, Если моменты времени t1, и t2 бесконечно близки, то время ?t бесконечно мало и в этом случае обозначается через dt. За время dt точка проходит бесконечно малое расстояние dS. Их отношение образует мгновенную скорость точки Производная радиус-вектора r по времени определяет мгновенную скорость перемещения точки. Поскольку перемещение совпадает с бесконечно малым элементом траектории dr = dS, то вектор скорости направлен по касательной к траектории, а его величина: На рис. показана зависимость пройденного пути S от времени t. Вектор скорости v(t) направлен по касательной к кривой S(t) в момент времени t. Из рис. видно, что угол наклона касательной к оси t равен Интегрируя выражение (1.5) в интервале времени от t0 до t, получим формулу, позволяющую вычислить путь, пройденный телом за время t-t0 если известна зависимость от времени его скорости v(t) Геометрический смысл этой формулы ясен из рис. По определению интеграла пройденный путь представляет собой площадь, ограниченную кривой v =v(t) в интервале от t0 до t.В случае равномерного движения, когда скорость сохраняет свое постоянное значение во все время движе¬ния, v=const; отсюда следует выражение где S0 путь, пройденный к начальному времени t0. Производную скорости по времени, которая является второй производной по времени от радиус-вектора, называют ускорением точки: Вектор ускорения а направлен вдоль вектора приращения скорости dv. Пусть а = const. Этот важный и часто встречаемый случай носит название равноускоренного или равнозамедленного (в зависимости от знака величины а) движения. Проинтегрируем выражение (1.8) в пределах от t = 0 до t:
Hosted by uCoz