Законы Ньютона и законы сохранения



На главную


          При рассмотрении кинематики использовалась неподвижная система отсчета. В природе не существует абсолютного движения, всякое движение имеет относительный характер: либо одного тела относительно другого, либо относительно выбранной системы отсчета. Возникает вопрос, все ли системы отсчета являются равноправными, а если нет, то какие являются предпочтительными. Единственное и естественное требование к системе отсчета состоит в том, что ее выбор не должен вносить усложнения в описание движения тел, т.е. законы движения в выбранной системе отсчета должны иметь наиболее простой вид. В частности, в такой системе должны оставаться неизменными свойства пространства и времени: пространство должно быть однородным и изотропным, а время однородным. Однородность пространства и времени означает, что наблюдаемые физические свойства и явления должны быть одинаковы в любой точке пространства и в любой момент времени. Не существует выделенных в каком-либо отношении точек пространства и моментов времени. Изотропность пространства означает, что все направления в пространстве равнозначны. Физические явления в замкнутой системе не должны изменяться при ее повороте в пространстве. Система отсчета, которая использовалась до сих пор, отвечала этим требованиям, но возникает вопрос, как ее реализовать, т.е. с какими объектами, реально существующими в природе, можно ее связать. Оказывается, что выбор подобной системы отсчета является непростым делом, так как требуемым условиям отвечает специальный класс физических объектов. Если «привязать» неподвижную систему координат к какому-либо произвольно движущемуся объекту, например к вагону поезда, можно заметить, что в данной системе отсчета сразу произойдут странные явления, например груз, подвешенный на нити, будет время от времени отклоняться от вертикали (что связано с действием различных ускорений вагона: при торможении или ускорении и при поворотах). В результате для описания этих явлений в данной системе координат придется прибегнуть к представлениям о взаимодействиях, внешних по отношению к системе, и включить их в рассмотрение. В то же время ясно, что в другой системе координат, не испытывающей указанных ускорений, описание механических явлений будет гораздо проще. Другой пример не очень подходящей системы отсчета — неподвижная система, связанная с Землей. В этой системе можно, напри мер, обнаружить вращение плоскости колебаний физического маятника (на самом деле связанное с вращением Земли вокруг своей оси), для объяснения которого нам также придется привлекать физические причины, являющиеся посторонними по отношению к данной системе отсчета. Вместе с тем, как показывает опыт, по отношению к Солнцу и звездам маятник будет вести себя стабильно, т.е. Солнце и звезды являются подходящими физическими объектами для выбора указанной системы отсчета. Как показывает опыт, нужным требованиям удовлетворяют системы отсчета, которые связаны с физическими объектами, не испытывающими внешних воздействий, т.е. не подвергающимися каким-либо ускорениям. В таких системах отсчета тела находятся в состоянии покоя или равномерного прямолинейного движения до тех пор, пока на них не действуют другие тела. Свойство тела сохранять такое состояние называется инерцией, и поэтому системы отсчета, о которых "идет речь, носят название инерциальных. Если наряду с выбранной инерциальной системой, рассмотреть другую, движущуюся относительно первой прямолинейно и равномерно, то свободное движение тела в новой системе будет также происходить с постоянной скоростью. Таким образом, существует бесконечное множество инерциальных систем отсчета. Во всех этих системах свойства пространства и времени одинаковы и одинаковы законы механики. Не существует никакой абсолютной системы отсчета, которую можно было бы предпочесть другим системам. В этом состоит принцип относительности Галилея. Его можно сформулировать и так: никакими механическими опытами невозможно установить, движется ли данная инерциальная система или покоится: оба состояния эквивалентны. Координаты точки в двух системах отсчета, одна из которых K' движется равномерно и прямолинейно относительно другой (K) со скоростью V, связаны соотношением. Законы Ньютона образуют основу динамики — раздела механики, рассматривающего взаимодействие тел. Первый закон Ньютона отражает свойство инерции, тел и часто называется законом инерции. Он утверждает, что всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Ясно, во-первых, что этот закон выполняется только в инерциальных системах отсчета. Во-вторых, отсюда следует важное заключение, что, поскольку изменение состояния покоя или равномерного движения связано с наличием в системе ускорения, последнее, в свою очередь, возникает как результат воздействия других тел. Это утверждение создает предпосылки для формулирования второго закона Ньютона. Воздействие одного физического тела на другое характеризуется физической величиной, называемой силой. Сила, действующая на тело, сообщает ему ускорение. Величина полученного ускорения пропорциональна приложенной силе. Но разные тела под влиянием одинаковых сил приобретают разные ускорения. Данный опытный факт есть проявление уже упоминавшегося свойства инерции тела. Это свойство количественно характеризуется инертной массой тела — коэффициентом пропорциональности между приложенной к телу силой и полученным им ускорением. Таким образом, второй закон Ньютона может быть записан в форме, где фигурируют вновь введенные физические величины: вектор силы F и инертная масса тела m. В таком виде его можно сформулировать следующим образом: ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела. Третий закон Ньютона имеет дело со взаимодействующими, телами. Он утверждает, что силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению. Важно подчеркнуть, что силы, о которых идет речь, приложены к разным взаимодействующим друг с другом телам. Законы сохранения
Hosted by uCoz